
Making the world’s
decentralised data more
accessible.

Lab Exercise Guide

Table of Contents

Introduction 2

Pre-requisites 2

Exercise 1: Index Staking Rewards 2
High level steps 2
Detailed steps 3

Step 1: Initialize your project 3
Step 2: Update the graphql schema 3
Step 3: Update the manifest file (aka project.yaml) 4
Step 4: handleStakingRewarded 5
Step 5: Build the project 6
Step 4: Query the project 7

Exercise 2: Aggregate Staking Rewards 9
Detailed Steps 9

Step 1: Add an entity called Staking Reward 9
Step 2: Update the manifest file 9
Step 3: handleSumRewarded 11
Step 4: Rebuild the project 11
Step 5: Query the project 11

Exercise 3: Viewing Both Aggregated and Individual Staking Rewards 12
Detailed Steps 12

Step 1: Modify the schema file 12
Step 2: Update handleStakingRewarded 13
Step 3: Rebuild the project 14
Step 4: Query the project 14

Exercise 4: Reward v Rewarded 16
Step 1: Update the manifest file 16
Step 2: Update the mapping file 16
Step 3: Rebuild the project 16
Step 4: Query the project 17

1

Introduction
In this workbook, we will take the starter project and look at how we can aggregate data.
Specifically, we will index staking rewards and then aggregate them over for a particular
account. In effect we are determining how much reward an account has accumulated over
time.

Pre-requisites
Completion of Module 3.

Exercise 1: Index Staking Rewards
Before we can aggregate all the staked rewards earned by a user or more specifically an
DOT account owner, we need to index all the staking rewards.

High level steps
1. Initialise the starter project
2. Update your mappings, manifest file and graphql schema file.
3. Generate, build and deploy your code
4. Deploy your code in Docker
5. Query for address balances in the playground

2

Detailed steps

Step 1: Initialize your project
The first step in creating a SubQuery project is to create a project with the following
command:

~/Code/subQuery/workshop$ subql init

Project name [subql-starter]: staking-rewards

? Select a network Polkadot

? Select a template project subql-starter Starter project for

subquery

Cloning project... done

RPC endpoint: [wss://polkadot.api.onfinality.io/public-ws]:

Git repository [https://github.com/subquery/subql-starter]:

Fetching network genesis hash... done

Author [Ian He & Jay Ji]:

Description [This project can be use as a starting po...]:

Version [0.0.4]:

License [MIT]:

Preparing project... done

staking-rewards is ready

Step 2: Update the graphql schema

Add an entity called StakingReward. This has fields that allows us to record the account
reward along with the balance. The block height will allow us to do a cross check.

type StakingReward @entity{

id: ID! #blockHeight-eventIdx

account: String!

balance: BigInt!

date: Date!

blockHeight: Int!

}

3

Step 3: Update the manifest file (aka project.yaml)
Update the manifest file to only include a handleStakingRewarded handler and update the
filter method to staking/Rewarded. This is the only event we want to capture for now.

- handler: handleStakingRewarded

kind: substrate/EventHandler

filter:

module: staking

method: Rewarded

Note: The Rewarded method was only recently introduced from block 6,713,249 onwards. It
was previously called Reward. For this exercise, we will use this newer format and use a
startBlock of 7,000,000

The full manifest file should look like this:

specVersion: 0.2.0

name: staking-rewards

version: 0.0.4

description: >-

This project can be use as a starting point for developing your

SubQuery

project

repository: 'https://github.com/subquery/subql-starter'

schema:

file: ./schema.graphql

network:

endpoint: 'wss://polkadot.api.onfinality.io/public-ws'

genesisHash:

'0x91b171bb158e2d3848fa23a9f1c25182fb8e20313b2c1eb49219da7a70ce90c3'

dataSources:

- kind: substrate/Runtime

startBlock: 7000000

mapping:

file: ./dist/index.js

handlers:

- handler: handleStakingRewarded

kind: substrate/EventHandler

filter:

module: staking

method: Rewarded

4

https://github.com/polkadot-js/api/blob/master/packages/types-known/src/upgrades/polkadot.ts

Note: We are starting at block height 7 million in this example and indenting matters.
Otherwise you will get the following error:

./node_modules/.bin/subql codegen

===============================

---------Subql Codegen---------

===============================

bad indentation of a sequence entry (17:5)

14 | mapping:

15 | file: ./dist/index.js

16 | handlers:

17 | - handler: handleRewarded

----------^

18 | kind: substrate/EventHandler

19 | filter:

error Command failed with exit code 1.

Step 4: handleStakingRewarded
The initialisation command pre-creates a sample mappings file with 3 functions,
handleBlock, handleEvent and handleCall. Delete all of them as we will create our own.

export async function handleStakingRewarded(event: SubstrateEvent):

Promise<void> {

}

Next, we declare an event object as follows:

const {event: {data: [account, newReward]}} = event;

We then declare a new instance of the StakeReward object and pass through the
blockheight +hyphen + eventid to create a unique identifier.

const entity = new

StakingReward(`${event.block.block.header.number}-${event.idx.toString()

}`);

We then obtain the account, newReward and the block timestamp and store it within the
relevant fields within our entity object. We then save the entity.

5

entity.account = account.toString();

entity.balance = (newReward as Balance).toBigInt();

entity.date = event.block.timestamp;

entity.blockHeight = event.block.block.header.number.toNumber();

await entity.save();

The full mapping file should look like this:

import {SubstrateEvent} from "@subql/types";

import {StakingReward} from "../types";

import {Balance} from "@polkadot/types/interfaces";

export async function handleStakingRewarded(event: SubstrateEvent):

Promise<void> {

const {event: {data: [account, newReward]}} = event;

const entity = new

StakingReward(`${event.block.block.header.number}-${event.idx.toString()

}`);

entity.account = account.toString();

entity.balance = (newReward as Balance).toBigInt();

entity.date = event.block.timestamp;

entity.blockHeight = event.block.block.header.number.toNumber();

await entity.save();

}

Step 5: Build the project
Run the standard yarn install, codegen, build and docker-compose pull & docker-compose
up commands.

yarn install

OR

npm install

yarn codegen

OR

npm run-script codegen

yarn build

6

OR

npm run-script build

docker-compose pull && docker-compose up

Step 4: Query the project
Once the docker container is up and running, which could take a few minutes, open up your
browser and navigate to www.localhost:3000.

This will open up a “playground” where you can create your query. Copy the example below:

query{

stakingRewards(first: 3 orderBy:BLOCK_HEIGHT_ASC){

nodes{

blockHeight

account

date

balance

}

}

}

This should return something similar to below:

{

"data": {

"stakingRewards": {

"nodes": [

{

"blockHeight": 7000064,

"account": "16jWQMBXZNxfgXJmVL61gMX4uqtc9WTXV3c8DGx6DUKejm7",

"date": "2021-09-26T16:50:18.001",

"balance": "2189068638"

},

{

"blockHeight": 7000064,

"account": "13MnytvGDqJLGZbizqd8CDKJUPa9UJyzXcdxRiJEv5g2hq47",

"date": "2021-09-26T16:50:18.001",

"balance": "2050030971"

},

{

7

http://www.localhost:3000

"blockHeight": 7000064,

"account": "12L117g377z195J3WaPshEaFC8vsNMyiMi8CTWfWVJdmBAJ4",

"date": "2021-09-26T16:50:18.001",

"balance": "2007885451"

},

{

"blockHeight": 7000064,

"account": "13owVsvG3GtmDYfcnDNCVm54z6X6VgYf37QRMFywrVPpkJvv",

"date": "2021-09-26T16:50:18.001",

"balance": "1987101808"

},

Congratulations. You have now indexed all staking rewards for all accounts from block 7M
onwards. Next, let’s aggregate or sum up these rewards for each account.

Exercise 2: Aggregate Staking Rewards
To aggregate the staking rewards, we first of all need to create another entity.

Detailed Steps

Step 1: Add an entity called Sum Reward

Add a new entity called SumReward with extra fields as seen below.

type SumReward @entity{

id: ID! # AccountId

totalReward: BigInt!

blockheight: Int!

}

The new schema file should now look like this:

type StakingReward @entity{

id: ID! #blockHeight-eventIdx

account: String!

balance: BigInt!

date: Date!

}

type SumReward @entity{

id: ID! # AccountId

8

totalReward: BigInt!

blockheight: Int!

}

Step 2: Update the manifest file

Add an extra handler called handleSumRewarded and filter it by staking/Rewarded.

- handler: handleSumRewarded

kind: substrate/EventHandler

filter:

module: staking

method: Rewarded

The complete manifest file should look like:

specVersion: 0.2.0

name: staking-rewards

version: 0.0.4

description: >-

This project can be use as a starting point for developing your

SubQuery

project

repository: 'https://github.com/subquery/subql-starter'

schema:

file: ./schema.graphql

network:

endpoint: 'wss://polkadot.api.onfinality.io/public-ws'

genesisHash:

'0x91b171bb158e2d3848fa23a9f1c25182fb8e20313b2c1eb49219da7a70ce90c3'

dataSources:

- kind: substrate/Runtime

startBlock: 7000000

mapping:

file: ./dist/index.js

handlers:

- handler: handleSumRewarded

kind: substrate/EventHandler

filter:

module: staking

9

method: Rewarded

- handler: handleStakingRewarded

kind: substrate/EventHandler

filter:

module: staking

method: Rewarded

Note: This is how more than 1 mapping handler can be added to a project. Also note that the
order is important too. Otherwise you may encounter an error such as:

ERROR failed to index block at height 7000064 handleStakingRewarded()

SequelizeForeignKeyConstraintError: insert or update on table

"staking_rewards" violates foreign key constraint

"staking_rewards_account_id_fkey"

Step 3: handleSumRewarded

Next, create a function called handleSumRewarded along with a helper function called
createSumReward.

function createSumReward(accountId: string): SumReward {

const entity = new SumReward(accountId);

entity.totalReward = BigInt(0);

return entity;

}

export async function handleSumRewarded(event: SubstrateEvent):

Promise<void> {

const {event: {data: [account, newReward]}} = event;

let entity = await SumReward.get(account.toString());

if (entity === undefined){

entity = createSumReward(account.toString());

}

entity.totalReward = entity.totalReward + (newReward as

Balance).toBigInt();

entity.blockheight = event.block.block.header.number.toNumber();

await entity.save();

}

Note: Run yarn codegen and import the new entity to remove the errors.

10

The mappings file should now look like:

import {SubstrateEvent} from "@subql/types";

import {StakingReward, SumReward} from "../types";

import {Balance} from "@polkadot/types/interfaces";

export async function handleStakingRewarded(event: SubstrateEvent):

Promise<void> {

const {event: {data: [account, newReward]}} = event;

const entity = new

StakingReward(`${event.block.block.header.number}-${event.idx.toString()

}`);

entity.account = account.toString();

entity.balance = (newReward as Balance).toBigInt();

entity.date = event.block.timestamp;

await entity.save();

}

function createSumReward(accountId: string): SumReward {

const entity = new SumReward(accountId);

entity.totalReward = BigInt(0);

return entity;

}

export async function handleSumRewarded(event: SubstrateEvent):

Promise<void> {

const {event: {data: [account, newReward]}} = event;

let entity = await SumReward.get(account.toString());

if (entity === undefined){

entity = createSumReward(account.toString());

}

entity.totalReward = entity.totalReward + (newReward as

Balance).toBigInt();

entity.blockheight = event.block.block.header.number.toNumber();

await entity.save();

}

11

Step 4: Rebuild the project

See building a project in the previous exercise.

Note: Because we have modified the schema, delete your database instance in the .data
folder.

Step 5: Query the project
The following query will list out the total rewards for each account.

query{

sumRewards(first:3 orderBy:BLOCKHEIGHT_ASC){

nodes{

blockheight

id

totalReward

}

}

}

You should see something similar to below:

{

"data": {

"sumRewards": {

"nodes": [

{

"blockheight": 7000064,

"id": "121FXj85TuKfrQM1Pdcjj4ibbJNnfsqCtMsJ24rSvGEdWDdv",

"totalReward": "10901386603"

},

{

"blockheight": 7000064,

"id": "123MFw5gAkCjcqEhapJ5zon4Ppyp59Rq2kyNQqEHbfwvM4Ni",

"totalReward": "1023809925"

},

{

"blockheight": 7000064,

"id": "129N6sYY5r9LnfaMY2AG9px9yYyUhN6FERPXKLfirwBrjkJv",

"totalReward": "980420660"

12

}

]

}

}

}

This is great, but wouldn’t it be better if we could not only display the totalReward, but also
the individual rewards that made up the totalReward? We’ll look at this in the next exercise.

Exercise 3: Viewing Both Aggregated and
Individual Staking Rewards
So far in this workbook, we managed to query for all the staking rewards and then aggregate
or add them all together for each account. Now we will make another improvement to allow
us to view the aggregate amount as well as the individual amounts as a child set.

Detailed Steps

Step 1: Modify the schema file

Update the graphql schema field called account to be type SumReward. We are creating a
one-many entity relationship where one sumReward will comprise of many individual staking
rewards.

type StakingReward @entity{

id: ID! #blockHeight-eventIdx

account: SumReward!

balance: BigInt!

date: Date!

}

Step 2: Check the manifest file

Check that the manifest file looks like the below:

specVersion: 0.2.0

name: staking-rewards

version: 1.0.0

description: ''

repository: ''

13

schema:

file: ./schema.graphql

network:

genesisHash:

'0x91b171bb158e2d3848fa23a9f1c25182fb8e20313b2c1eb49219da7a70ce90c3'

endpoint: wss://polkadot.api.onfinality.io/public-ws

dataSources:

- kind: substrate/Runtime

startBlock: 7000000

mapping:

file: ./dist/index.js

handlers:

- handler: handleSumRewarded

kind: substrate/EventHandler

filter:

module: staking

method: Rewarded

- handler: handleStakingRewarded

kind: substrate/EventHandler

filter:

module: staking

method: Rewarded

Step 3: Update handleStakingRewarded

In handleStakingRewarded, modify:

entity.account = account.toString();

to:

entity.accountId = account.toString();

Because we are effectively creating a relationship or link between our two entities or tables,
the StakingReward entity needs to have a column that is the same value as the primary key
column in the SumReward entity.

Because the SumReward entity has been assigned the account value (account.toString()),
we must do the same here.

14

The updated mappings file should look like this:

import {SubstrateEvent} from "@subql/types";

import {StakingReward, SumReward} from "../types";

import {Balance} from "@polkadot/types/interfaces";

export async function handleStakingRewarded(event: SubstrateEvent):

Promise<void> {

const {event: {data: [account, newReward]}} = event;

const entity = new

StakingReward(`${event.block.block.header.number}-${event.idx.toString()

}`);

entity.accountId = account.toString();

entity.balance = (newReward as Balance).toBigInt();

entity.date = event.block.timestamp;

await entity.save();

}

function createSumReward(accountId: string): SumReward {

const entity = new SumReward(accountId);

entity.totalReward = BigInt(0);

return entity;

}

export async function handleSumRewarded(event: SubstrateEvent):

Promise<void> {

const {event: {data: [accountId, newReward]}} = event;

let entity = await SumReward.get(accountId.toString());

if (entity === undefined){

entity = createSumReward(accountId.toString());

}

entity.totalReward = entity.totalReward + (newReward as

Balance).toBigInt();

entity.blockheight = event.block.block.header.number.toNumber();

await entity.save();

}

Step 4: Rebuild the project

See building a project in the previous exercise.

15

Step 5: Query the project
Now we can run a query and utilise a stakingRewardsByAccountId field that is automatically
created in order to find the individual staking rewards.

Below is an example query of one specific account.

query{

sumRewards(filter:

{id:{equalTo:"16jWQMBXZNxfgXJmVL61gMX4uqtc9WTXV3c8DGx6DUKejm7"}}){

nodes{

blockheight

id

totalReward

stakingRewardsByAccountId{

nodes{

balance

}

}

}

}

}

16

The result returned shows that a total reward of 4049635655 is made up of two balances.

{

"data": {

"sumRewards": {

"nodes": [

{

"blockheight": 7013941,

"id": "16jWQMBXZNxfgXJmVL61gMX4uqtc9WTXV3c8DGx6DUKejm7",

"totalReward": "4049635655",

"stakingRewardsByAccountId": {

"nodes": [

{

"balance": "2189068638"

},

{

"balance": "1860567017"

}

]

}

}

]

}

}

}

Exercise 4: Reward v Rewarded
Thus far, we have been using the Rewarded method in the manifest file which was only
recently introduced from block 6713249 onwards as mentioned earlier. It was previously
called Reward so to capture all the staking rewards prior to this change, we need to update
our code.

Step 1: Update the manifest file

Add the following mapping filters to the manifest file. Essentially we have removed the “ed”
from the handler name and the method.

- handler: handleSumReward

kind: substrate/EventHandler

filter:

module: staking

17

https://github.com/polkadot-js/api/blob/master/packages/types-known/src/upgrades/polkadot.ts

method: Reward

- handler: handleStakingReward

kind: substrate/EventHandler

filter:

module: staking

method: Reward

Also changing the start block to 6,000,000 should result in staking reward data being
returned.

When you change the starting block, don’t forget to delete the database and reindex.

Step 2: Update the mapping file
Here we can create a redirect function from the old method to utilise the same code as we
have already captured the event.

export async function handleSumReward(event: SubstrateEvent):

Promise<void> {

await handleSumRewarded(event)

}

export async function handleStakingReward(event: SubstrateEvent):

Promise<void> {

await handleStakingRewarded(event)

}

Step 3: Rebuild the project

See building a project in the previous exercise.

Step 4: Query the project
Re-run the previous queries and data should appear for blocks starting from 6M. Note, you
may have to wait until the relevant blocks have been indexed.

query{

sumRewards(first:3 orderBy:BLOCKHEIGHT_ASC){

nodes{

blockheight

id

totalReward

}

}

}

18

You should see:

{

"data": {

"sumRewards": {

"nodes": [

{

"blockheight": 6001338,

"id": "11283CvjWWXesEPQxryZYxjBwTqFV7NMRw8reNGJfzQF4GvS",

"totalReward": "5068047768"

},

{

"blockheight": 6001338,

"id": "112EHZp2Dn8jqW9iqpAUFW3ChmiiT6cMnN1arsqJtatnthfz",

"totalReward": "503936239"

},

{

"blockheight": 6001338,

"id": "11agCcnJ8cYvKby6p27CiLxBaS1G1hnbRmwtUBAQ3beygUA",

"totalReward": "1874696285"

}

]

}

}

}

19

